Linux, Open Source, and System Bring-Up Tools

How to make bring-up hurt less

Tim Hockin
Google, Inc
t hocki n@oogl e. com

Abstract Platform: Sometimes used as a synonym for mother-
board, a platform is really the combination of compo-

System bringup is a complex and difficult task. Mod-nents that make up a computer system. This includes

ern hardware is incredibly complex and it's not gettingthe CPU or CPU family, the memory controller, the 10

any simpler. Bringup engineers spend far too much timeontroller, the DRAM, the |0 devices, and usually the

hunting through specs and register dumps, trying to findystem firmware.

the source of their problems. There are very few tools

available to make this easier. . ) .
Bring-up: The process of evolving a platform from an

This paper introduces three open source tools that ce#xpensive “objet d’art” into a fully operational computer
help ease the pain, and hopefully shorten bringup cyclesystem. This process usually involves debugging and/or
for new platforms. SGABIOS is a legacy option ROM working around the hardware, configuring the system in
which implements a simple serial console interface foBlOS, and hacking the drivers and kernel into shape. It
BIOS. lotools is a suite of low-level utilities which en- often includes superstitious rituals, cynical prayersi an
ables rapid prototyping of register settings. Prettyprintots of cussing.

is a powerful library and toolset which allows users to

easily examine and manipulate device settings. BIOS: Basic Input Output System. The BIOS is the
software that executes when a PC powers on, and is pri-
Introduction marily responsible for configuring the hardware.

Sometimes you get lucky on a bring-up, and thingsjusIi)evice A piece of hardware that is logically self-

work the way they are supposed to. More often than ntained. While a typical thbridge i indle chi
not, though, something goes wrong. Unfortunately, jpsoontained. yvhtie a typical soutnbridge 15 a singie chip,
) g . it is usually viewed as a collection of devices, such as
usually many “somethings” that go wrong. When things . : .
. (%I]Jsk controllers, network interfaces, and bridges.
do go wrong, someone has to figure out what happene
and how to fix it.

Chipset A hardware chip or chips that provide the bulk

Platforms today are vastly more complicated than they,¢yhe 5 on a platform. Chipsets are typically tested and
were just a few years back. Almost nothing works Whe”sold as a single unit. These generally includacath

the system powers on. It all Teeds to be configuredy jyqe which contains one or more memory controllers
When the inevitable “something” goes wrong, determln-aS well as high-speed 10 bridges, andauth bridge

ing the cause can be an overwhelming task. which contains lower-speed devices such as storage and

Of course, there are no magic bullets, but there are tool€gacy bus interfaces.
that can help to make some of these problems easier.

Register. An addressable set of bits exposed by a de-
1 Terminology vice. Most devices contain many registers. Registers

generally hold control and status bits for the device, and
Before diving in, it's important that we are all speaking can be mapped into a multitude of address spaces such
the same language: as PCI config space, memory, or 10 space.



2 Serial Console For The Unwashed Masses  adapt its internal structures to the detected terminal size
SGABI OSthentrapg NT 10h, the legacy “print some-
An obvious place to start is to get the BIOS output aghing” BIOS function, and NT 16h, the legacy “read
it boots. Just about anyone who has ever booted up keyboard” function. The final result is that any well-
PC has seen the BIOS output on the screen. This ifehaved BIOS, option ROM, or legacy OS will now be
however, not very useful. Most servers do not have aising the serial port transparently. However, there are
monitor plugged in to them at all times. VGA-capable some badly behaved programs which attempt to write to
chips, while not particularly high-tech, are not free toVGA memory directly. SGABI CS can not fix those ap-
buy or run. Why require one on every server? plications. Fortunately, this does not seem to be a very

_ _ _ big problem.
It is a sad fact that many platforms available toddilt

do not have serial console support. Those that do oy, have successfully ruBGABI OS with LILO and
fer it usually offer it as an up-sell on the BIOS, and thegruB. as well as DOS. It works wonderfully for the
implementation quality is often questionable. uses we have found, though it does have its limita-

Some implementations provide side-band interfacesliions' Some applications, such as LILO, queémdT
which only get used to print certain information. This is 10N for previously displayed data. Because there is no

not particularly useful to anyone, and is fortunately notYGA memory backing itSGABI G5 only stores a small

seen much any more. Some implementations do what &mount of the most recently printed output. This has
calledscreen scrapingvhich depends on a real VGA de- 2€€n good enough to handle the applications we have

vice with real VGA memory to store the screen contentsfound to do this, but it does have the potential to fail. As

They periodically scan the VGA memory and send up_yvith so many things, it is a memory size vs. functional-
dates on the serial port. Some implementations suppol® radeoft.
text output but completely break down in the face of “ad-

vanced” features like cursor movement or color. You can find SGABI S at http://sgabi os.

googl ecode. com

2.1 Solving It Once And For All

In order to provide a consistent feature set, one Googlg Simple Access To Registers

engineer chose to solve this once and (hopefully) for

all. Thus was borrBGABI G5 — the Serial Graphics A recurring situation in my office is that you can boot,
Adapter SGABI OSis a stand-alone option ROM which p,+ something is not right. You might have some ideas

can be loaded on a platform to provide serial consolgy, what it could be, but you need to run some additional
support. It provides a robust set of VGA-compatible featasts. you need to modify some registers.

tures which allow most BIOS output to be converted to
serial-safe output. It supports basic cursor movement/s,, could have the board vendor build some test

color, text input, and large serial consoles. BIOSes with the various settings. That's not going to

The easiest way to URGABI OSis to make your BIOS ~ P€ an effective, scalable, or timely solution.

load it as an option ROM. You can try to convince your , _
board vendor to include it as an option ROM in the YoU could build a custom kernel which programs the

BIOS build, or you can use tools (usually provided bydesired changes_; at least you control that part. It's still a
the BIOS vendor) to load an option ROM into a BIOS Pretty heavy weight answer, and the hardware test team
image. If this is not an option for you, all is not lost. are not really kernel hackers. This approach is better

There are commercially available add-in debug cargd1an the last one, but not good.

which have option-ROM sockets. In a pinch, many net-

work and other cards have programmable ROMs whicfPhe might ask “H_Old on,_doesr_ft theok”ernel eXpose some
can be made to load an arbitrary option ROM. APIs that let me fiddle Wlth reglsters.' Why yes, it does.
Now you only have to write some simple programs to

When started,SGABI OS attempts to detect if there do these tests. But again, the test team are not really C
is a terminal attached. If detecte&GABI OS will programmers. There must be something simpler.



3.1 Introducing lotools

A simple, scriptable interface to device registers allows
anyone who can do basic programming to deal with this
problem. Almost anyone is now able to trivially read
and write registers, thereby enabling a whole new de-
bugging army.

This is the goal of ot ool s. Thei ot ool s package
provides a suite of simple command line tools which en-

able various forms of register accesses. They are mostly

thin wrappers around Linux kernel interfaces such as
sysfs and device nodekot ool s also includes a num-
ber of simple logical operation tools, which make ma-
nipulating register data easier.

Thei ot ool s “suite” is actually a single binary, a la
busybox. This allows for simple distribution and in-
stallation on target systems. Thet ool s binary is
less than 30 kilobytes in size when built with shared li-
braries. Building it as a static binary obviously increases
the size, depending on the libc it is linked against. This
should make ot ool s suitable for use in most size-
sensitive environments, such as flash or initramfs.

A note of caution is warranted. Writing to registers on a

running system can crash the system. You should al-
ways understand exactly what you are changing, and
whether there might be a kernel driver managing those
same registers. Sometimes it is enough to simply unload
a driver before making your changes. Other times you
just have to go for it.

MMIO : Read and write memory-mapped regis-
ters or physical memory. This provides access
to the entire 64 bit physical memory space via
[ dev/ mem It supports 8 bit, 16 bit, and 32 bit
operations.

MSR: Read and write x86 model specific registers
on any CPU. This provides access to the full 32 bit
MSR space vid dev/ cpu/ x/ nsr. It supports
only 64 bit operations (all MSRs are 64 bits).

TSC: Read the CPU timestamp counter on the cur-
rent CPU. This is provided by thRDTSC instruc-
tion and is always a 64 bit operation.

CPUID: Read data from th€PUI Dinstruction on
any CPU. This provides access to the full 32 bit
CPUID space vid dev/ cpu/ =/ cpui d.

SMBus: Read and write registers ddivBus de-
vices. This is provided by thé dev/i 2c- *
drivers and supports 8 bit, 16 bit, and block op-
erations.

CMOS: Read and write legacy CMOS memory.
Most PCs have around 100 bytes of non-volatile
memory that is accessed via the real-time clock.
Access is provided by thédev/ nvr amdriver,
and only supports 8 bit operations. This should be
used with caution. CMOS memory is often used
by the system BIOS, and changing it can have un-
intended side-effects.

3.2 What's In lotools?

At the time of writing, thei ot ool s suite includes
tools to access the following register spaces:

e PCIl: Read and write registers in PCI config space. ®

This includes both traditional config space (256

bytes per device) and extended config space (4
Kbytes per device) for those devices which support

it. Access is provided bgysf s orprocfs and
is supported as 8 bit, 16 bit, and 32 bit operations.

IO: Read and write registers in x86 10 ports. This

In addition to the register access todl®t ool s also
includes several tools to perform logical operations on
numbers. These tools are important because they sup-
port 64 bit operations and treat all numbers as unsigned,
which can be a problem in some shell environments.

AND: Produce the logical AND of all arguments.

e OR: Produce the logical inclusive OR of all argu-
ments.

e XOR: Produce the logical exclusive OR of all ar-
guments.

e NOT: Produce the bitwise NOT of the argument.

covers the 64 Kbyte space only. Access is provided

by I NandQUT instructions and is supported as 8
bit, 16 bit and 32 bit operations.

e SHL: Shift the argument left by a specified number
of bits, zero-filling at the right.



e SHR: Shift the argument right by a specified num-  done
ber of bits, zero-filling at the left (no sign exten- done
sion).

3.3 A Simple Example This version takes a bit longer to run, but works regard-
less of the devices in the system. You can shorten the
. run time significantly by putting a sane upper bound on
Suppose you need o test the behavior of enaliagR the number of buses. Few systems have more than 20 or

reporting on your platform. This is controlled by bit 8 S L
of the 16 bit register at offset 4 of each PCI device. You30 buses, even in this era of point-to-point PCI Express

. : . buses.
could whip up a quick script:
This is the sort of tool that someone with very basic shell

#1'/ bi n/ bash scripting skills can produce in just a few minutes with
i ot ool s.
function set_serr { o )
# SERR is bit8 (0x100) of You can findiotools at http://iotools.
# 16 bit register 0x4 googl ecode. com

OLD=$(pci _readl6 $1 $2 $3 0x4)
NEWE$(or $OLD 0x100)

pci_write32 $1 $2 $3 4 $NEW 4 Making It Simpler
}
The previous section shows just one example of the
# hardcoded list of PO addresses sorts of problems that arise during bring-up. Frankly, it
set_serr 0 0 0 wasn't a particularly complicated problem, and the so-

set_serr 00 1

set serr 0 0 2 lution is bordering on real programming. Worse than

that, it requires that the person doing the work remem-
ber several “magic” numbers. Which register is this bit
in? How wide is that register? Which bit is it? Taken

You can do better than this, though. You can trivially further, the problem quickly becomes very difficult.

make this script loop for each PCI device:
Suppose you want to examine or configure something

more complicated, like PCI Express advanced error re-
porting (AER). AER is aapabilityin PCI terminology.
That means that some devices will support it and some

#!/ bi n/ bash

function set_serr {

# SERR is bit8 (0x100) of will not. The only way to find out is to ask each de-
# 16 bit register 0x4 vice. Further, each device might put the AER registers
OLD=$(pci _readl6 $1 $2 $3 0x4) at a different offset in their PCI register set. As if that
NEWE$( or $OLD 0x100) is not enough, some devices have different AER register
pci _write32 $1 $2 $3 4 $NEW layouts, depending on what kind of device they are and
} which version of the the specification they support.
# for each bus, dev, func Doing this in ari ot ool s script is certainly possible; it

for Bin $(seq 0 255); do
for Din $(seq 0 31); do
for Fin $(seq 0 7); do

just isn't so simple anymore. Google needed something
that internalizes and hides even more of the details. This

pci _read32 $B $D $F 0 \ gave rise tprettyprint.
>/ dev/ nul | 2>&1

if [ $2 1=01]; then 4.1 An Unfortunate Name

# does not exi st

conti nue; . . .
fi The original goal opr et t ypri nt was this: to dump
set_serr $B $D $F the state of all the registers in the system in a diff-

done friendly format. This would allow us to use one of our



favorite debug tools, which we cdlDid you try rolling Now, when you dump the state of a device, you can see
back the BIOS?"Boot with BIOS A,prettypri nt aline item that sayserr: yes.

the system. Boot with BIOS Bar et t ypri nt the sys- . _
tem. Therdi f f the results. This is vastly more useful than a hexadecimal number

about which | have to remember that bit 8 being set
Like the previous examples, there are other ways of domeansSERRis enabled. Even better, since | now have a
ing this. They all resulted in a screenful of numbers,system that understander r directly, | can write to it
followed by a few hours of digging through datasheetdust as easily as I can read from it.
to find what each bit of each differing register means.
The only thing worse than going through this proces#t.4 Binding Fields To Devices
and finding that the difference is undocumented is go-
ing through this process multiple times. The previous example glossed over the details of
“for each PCI device”. This is a key aspect of
Insteadpr et t ypri nt attaches a datatype to field val- prettyprint’s power. Registers are defined in an
ues, allowing it to produce output which is not only diff- gpstract way, divorced of exactly which device or ac-

friendly, but which is also human-friendly. cess method they employ. They simply hazd-
dresses When it comes time to use these registers,
4.2 Fundamentals Of Prettyprint prettyprint passes control to the drivers which en-

able each class of device. Binding is used to map

_ , which abstract registers belong to which driver.
Prettyprint hastwo fundamental constructepis-

tersandfields In keeping with the common vernacular, When starting uppr et t ypri nt can find hardware
a register is a single addressable set of bits. Registeftevices in one of two ways. Firstly, you can tell it where
have a defined, fixed width, but they have no intrinsica device is found. This is the only option for some de-
meaning. vices, especially legacy devices. For example, to tell
prettyprint about the serial port, you would have
Fields, on the other hand, are of arbitrary width and areo tell it something to the effect there exists a serial
the only entity with meaning. Fields can be defined agort in 10 space, at address 0x3f8’In so doing, you
a set of register bitsrggbity, constant bits, or even as have giverpr et t ypri nt enough information to bind

procedures. Every field has a datatype, and the result @fie serial port registers and fields to a driver and address.
reading a field is a value that can be evaluated against

that datatype to produce a human readable string. ~ Better still, you can lepret t ypri nt discover some
devices. Many modern devices can be discovered ei-

. ther through the hardware itself, such as PCI, or through
4.3 The Power Of Fields simple interfaces, such as ACPI. In this case, the driver
has a discovery routine which will find devices and bind

Let's look at a the Simp|e examp|e from section 3.3. Forthem as it finds them. This is how we are able to define
each PCl device there is a 16 bit register at offset 4 callethings likeser r as something that exists “for each PCI
% omand (the %is a convention to indicate a name is device”.

register). For each PCI device there is also a field called

ser r . This field is exactly 1 bit wide, and is composed 4.5 About The Implementation

of bit 8 of %¢ommand. When accessing this field, one

can interpret its value as a boolean, where a value of 1 Pr et t ypri nt is written in C++. | can hear the cries
"yes"and a value of 0 =no". of frustration already. Why C++? Because | thought that
the problem decomposed nicely into an object-oriented
model, and because | wanted to improve my C++.

%command [is]ia]is 12|11|1o|9 8|7|6 s[4 3|2|1 Io
< Prettyprint has been designed from the start as
D/ a library to be used as a backend by various applica-
serr tions. From state dumping utilities to interactive shells
Figure 1: A simple field to FUSE filesystems, anything is possible.



4.6 Defining Registers And Fields Let’s consider a more complicated example. In a PCI-
PCI bridge, there are several registers which control the
So how does one go about defining a device? One (ﬁddress ranges which are decodgd by the pridge. They
the things that the choice of C++ brought to the projectare |mpleme_nted as 2 different registers, whlqh combine
was a way to manipulate the language syntax. The enl§ form a Ioglca_l 64 bit ad'dress. The low 20 bits of both
goal is to have an actual interpreted language which ighe ba_tse and| i m t register are fixed to 0 and 1 re-
used to define devices. Until then, we have a set of C+§pect|vely.
classes, functions, and templates which define a pseudo-

language. %base_hi %base_lo

31 0 st 4

3 0

This pseudo language is intended to make the definition
of registers and fields as simple as possible. Let’s look \ /
at theSERR example: base T 7 w0000
REGL6( " %ommand”, 0x04): %Iimitﬂ_hi 0 %I1i5mit_lo4 _
FI ELD("serr", "yesno_t", I
BI TS(" %command", 8)); \
limit [ 2 219 0

111..111

Figure 3: Complex fields

That'’s pretty straight-forward. We defifd€ omrand as

a 16 bit register at address 0x04. We defiee r as a
field with datatypeyesno_t , composed of bit 8 from
% ommand.

Inprettyprint,thisis expressed as:

] ) ] ~ REGL6("%ase_| 0", 0x24);
Frequently, a field maps directly to a register. To Sim-ReG32( " 9base_hi", 0x28):

plify this, prettypri nt understandsegfields For REGLI6("%imt_|o", 0x26);
example, the PCI “intpin” field is the only consumer of REG32("% imt_hi", 0x2c);

the% nt pi n register.
FI ELD( " base", "addr64_t",

Bl TS(" %ase_hi ", 31, 0) +

%intpin [7[s]s[4[3]2[]o Bl TS(" %ase_| 0", 15, 4) +
BI TS(" 90", 19, 0));
122222212 FIELD("limit", "addré4 t",
L DRENRLRNT BITS("%init_hi", 31, 0) +
Intpin BITS("%imt _lo", 15, 4) +

Figure 2: A regfield BITS("%", 19, 0));

We can express that as: . .
Notice the use oP® and % as registers. These are

the magic registers When read%® always returns all

REGB(" % nt pi n", 0x3d); logic 0 bits. Likewise%d always returns all logic 1 bits.
FIELD("intpin", "int_t", Also notice that the bits in a field are defined from most
BITS("% ntpin®, 7, 0)); significant to least significant. A field can be arbitrarily

long, and can be composed of any number of regbits.
Or we can take the equivalent regfield shortcut: 4.7 Scopes And Paths

REGFI ELD8("i ntpi n", 0x3d, "int_t"); The examples so far have been relatively small. In real-
ity the %conmrand register has a number of fields that



derive from it. All told, there are thousands of fields in e bool: a binary enum
each PCI devicepr et t ypri nt providesscopesas a

mechanism for grouping related things together. e bitmask: a set of name bits

Think of scopes like directories in a filesystem. EaChThese primitives are used to create several pre-defined
scope has a name and a set of contents. A scope canc (Patatypes

tain registers, fields, or other scopes. Like the filesystem
metaphor,pr ett ypri nt has paths. There is a con-
ceptualroot of the path tree, and each register, field, and e int_t: a number
scope can be named by a unique path. Also like a UNIX
directory tree, path elements are seperated by a forward

slash (), and two dots.() means the parent scope. e hex4 _t a4 bit hexadecimal number

e hex_t a hexadecimal number

The %conmand register from our previous examples o hex8_t a 8 bit hexadecimal number

actually looks something like this:
e hex12_t a 12 bit hexadecimal number

REGL6( " %conmmand”, 0x04); e hex16_t a 16 bit hexadecimal number
(PEN_SCODE( "conmmand") ;

FI ELD("io", " yesno t", e hex20 _t a 20 bit hexadecimal number
BI TS( / %¢onmand”, 0)); ] )

FI ELD( " ment yesno t" e hex32_t a 32 bit hexadecimal number
BITS %tormand 1)); . .

FI ELD( " bn' | " yesno £ ) e hex64 _t a 64 bit hexadecimal number
BI TS( %tommnd 2)); . .

FI ELD( " speci aI "yesno._ t e hex128 t a 128 bit hexadecimal number
BI TS(" %'O”Tm”d 3)): e addrl6_t a 16 bit address

FI ELD(" mni nv", "yesno_t"
BITS("../%ommand", 4)); e addr32_t: a 32 bit address

FI ELD( " vgasnoop , yesno t",
BITS("../%omand", 5)); e addr64_t: a 64 bit address

FI ELD("perr", "yesno_t"
BI TS(" %:ormand , 6)); e yesno_t a boolean, 1 ="yes", 0 ="no"

FI ELD(" st ep", "yesno_t" . .o .
BITS("../%ommand", 7)); e truefalse_t a boolean, 1 ="true", 0 = "false

FI ELD("serr™, "yesno_t", ) e A g
BITS(". ./ %omand", 8)): e onoff t: a boolean, 1 ="on", 0 ="off

FI ELD("f bb", "yesno_t",
BI TS(". ./ %ommand", 9));
FIELD("intr", "yesno_t",
BI TS(". ./ %onmand", 10));
CLOSE_SCOPE() ;

e enabledisable t a boolean, 1 = "enabled", 0 =
"disabled"

e bitmask_t: a simple bitmask

Without doubt, any reasonably complex device will
4.8 Datatypes need to define its own datatype®r et t ypri nt al-
lows datatypes to be defined at any level of scope, and

Each field can be evaluated against its datatypeo be used in any scope below the definition - similar to

Prettyprint defines a number of primitives: C.
e int: adecimal number e INT(name, units?). define a new int type with op-
tional units
e hex a hexadecimal number . . )
e HEX(name, width?, units?). define a new hex
e enum: an enumerated value type with optional width and units



e ENUM(name, KV(name, value), ...) define a BI TS(" %base_|l 0", 3, 0));

new enum type with the specified named values
if (FIELD EQ"width", "bits16")) {
e BOOL(name, true, false) define a new bool type FI ELD( " base", "addr16_t",

with the specified true and false strings BI TS(" %base_|l 0", 7, 4) +
BITS("9%®", 11, 0));
e BITMASK(name, KV(nhame, value), ... define } else { // bits32
a new bitmask type with the specified named bits FI ELD( "base", "addr32_t",
BI TS(" %ase_hi", 15, 0) +
BI TS("%ase | o, 7, 4) +
Sometimes you want to define a new datatype for ex- BITS(" %", 11, 0));
actly one field. Rather than come up with a good}
name for it, each of the datatype definitions supports
an ANON _ prefix, which removes the name argument

and progluces an anonymous datatype. For example, ihis example you see the usageRIfELD EQ().

the previous PCi nt pi n example usednt _t asthe  this performs a read of thei dt h field and compares

datatype. In reality, we want an enumerated type. Thigye resyit against the value specified. Comparisons can

is the only field that will use this type, so we want to o q4ne py string or by number, thanks to function over-

declare it anonymously: loading in C++. The above example could have just as
easily (though less maintainably) used:

REGFI ELD8("i nt pi n", 0x3d, ANON_ENUM

E&E Imr:?: 2; FI ELD EQ("wi dth", 0)

KV("inth", 2),

KV("intc", 3),

KVt intd™, - 4))): The actual evaluation of the a comparison is done by
the specific datatype, which is the only place that can
actually determine what it means to compare values.

4.9 Advanced Techniques Prettyprint supports the following comparison op-

erations:

So far, we've seen howr ettyprint can be used
to define simple registers and fields. Unfortunately,

few hardware devices are so simple. Because the * FIELD_EQ:thefieldis equaltothe specified com-

. . , arator
prettyprint “language” is actually a dialect of C++, P
there is a lot of power at your fingertips. e FIELD_NE: the field is not equal to the compara-
tor

Hardware registers are at a premium. Often the hard-

ware will overload the meaning of some bits depending e FIELD LT : the field is less than the comparator

on the state of other bitd®r et t ypri nt supports the

conditional definition of registers and fields. e FIELD_LE : the field is less than or-equal-to the
comparator

Let’s look at another example. In a PCI bridge’s 10 de-

code window, there is i dt h field. That field deter- ~ ® FIELD_GT : the field is greater than the compara-

mines whether the high half of thease field is valid. tor

e FIELD_GE: the field is greater than or-equal-to
REGB(" %base_| 0", 0x1c); the comparator
REGL6( " %base_hi", 0x30);

e FIELD_BOOL : the field is boolean TRUE, equiv-

FI ELD( "wi dt h", ANON_ENUM alentto NE O
KV("bits16", 0),
KV("bits32", 1)), e FIELD_AND : the field matches the comparator



Again, because ther et t ypri nt “language”isreally Thedri vers subdirectory contains the driver mod-
just C++, almost any native construct will work. Thereules. Currentlypr ett ypri nt only supports Linux,
are some limitations, though. though it would not be hard to add support for other

_ _ ) operating systems. At the time of writing, the drivers
To start with, C++ will not allow a&swi t ch statement  gjrectory contains drivers for:

on a non-integer value, so you can not switch on enu-
merated strings. In the eventuai et t ypri nt lan- _
guage implementation, this will be supported. e PCl:via/ sys or/ proc

Secondly, control statements are evaluated just once, ® MEM:via/ dev/ mem
as the tree of registers and fields is being built. Later
changes to control bits do not change the tree struc-
ture. This is something we want to enable in the e MSR:via/dev/cpu/ */ nsr
prettyprint language, but we do not have support
for it yet.

e |O: vial NandQOUT instructions

e CPUID: via/ dev/ cpu/ +/cpui d

4.10 Discovering Specific Devices Thedevi ces subdirectory contains device code, writ-
ten in thepr et t ypri nt “language”. When we have
fbreal language parser, this is the code that will be re-
ritten in the new languageRr et t ypri nt currently
as support for:

Throughout these examples, we have looked at standa
PCI fields and registers. The PCI standard covers onl
a fraction of the available PCI register space. Almos
every PCI device defines its own non-standard register

set. What about those extra registers and fields? e PCI: most of the fields for generic PCI and PClI

_ _ Express devices, including many capabilities.
In the same way thaprettyprint can discover

generic devices, such as PCI, it can also discover spe- ¢ CPUID: very basic CPUID fields

cific devices. A device definition can register itself for

discovery through a specific driver. When the driver’s _ _

discovery mechanism detects the registered device, (J:l.sastly, theex_arrpl es subdlrector_y cor_1ta|ns example
determined by a driver-specific signature, it invokes thdrograms which use ther et typri nt library.

specific device code, rather than the generic.

4.12 FUSE And Prettyprint
For example, a device definition for an AMD Opteron

might register with the PCI driver for the vendor and de-One of the more exciting examples is the_f s appli-

v_ice pair( 0x1022, OXll.OO) ' When the PCI driver. _cation. This is aUSE filesystem which allows direct
finds that vendor and device pair, the Opteron-specm%lccess to registers and fields

device code would be invoked, rather than the generic

PCI device code. Usingpp_f s, the example of settinGERR on all de-

. . L vices becomes trivial:
Rather than re-encoding the entire PCI specification, the

generic PCI code can be invoked from the Opteron code.
This allows device code to extend standard devices with find /pp -whol ename \*command\/serr \

very little effort. | while read X; do
echo -n "$X: $(cat $X) -> "

echo "yes" > $X
4.11 The Directory Tree cat $X
done

. . . [ pp/ pci.0.0.0.2/ d/ : ->
Theprettyprint code is broken into four compo- /EE/ Eg: 00 .O/ggmzd/:g:: 28 S z:
0.0
0.0

0
1

nents. The top level directory contains the core classeppp/ pci . . 0.1/ conmand/ serr: no -> yes
0

and functions that make up tipe et t ypri nt library.  /pp/ pci . .0/ command/ serr: no -> yes
This includes pp_register, pp_field, pp_datatype, etc.

9



4.13 Current Status

The current examples demonstrate the capabilities of
prettyprint. pp_di scover has already proven

to be a useful tool at Google. But there is still a lot of
work to do in many areas.

Prettyprint is under active development. A great
way to get involved is to encode new hardware devices
into thepr ett ypri nt language. The larger our de-
vice repository gets, the more useful it becomes.

You can find prettyprint at http:
[l prettyprint.googl ecode.com

5 Acknowledgements

Thanks to Nathan Laredo for pushing to make
SGABI OS a reality.

Thanks to Aaron Durbin for busybox-ifyingot ool s
on a whim, and to all the Google platforms folks who
have added tools to it.

Thanks to Aaron Durbin, Mike Waychison, Jonathan
Mayer, and Lesley Northam for all their help on
prettyprint.

Thanks to Google for letting us hack on fun systems and
release our work back to the world.

10



